Simplification of metric spaces

Metric graph approximations

Osman Berat Okutan ${ }^{1}$

${ }^{1}$ Department of Mathematics
The Ohio State University

04/27/2019

[^0]
Metric graph approximations

- A standard result in metric geometry is that every compact geodesic metric space can be approximated arbitrarily well by finite metric graphs in the Gromov-Hausdorff sense.

Metric graph approximations

- A standard result in metric geometry is that every compact geodesic metric space can be approximated arbitrarily well by finite metric graphs in the Gromov-Hausdorff sense.
■ The first Betti number of the approximating graphs may blow up as the approximation gets finer.

Metric graph approximations

- A standard result in metric geometry is that every compact geodesic metric space can be approximated arbitrarily well by finite metric graphs in the Gromov-Hausdorff sense.
■ The first Betti number of the approximating graphs may blow up as the approximation gets finer.
- What can we say about the approximation if we put an upper bound the first Betti number of the approximating graphs?

Metric graph approximations

- A standard result in metric geometry is that every compact geodesic metric space can be approximated arbitrarily well by finite metric graphs in the Gromov-Hausdorff sense.
- The first Betti number of the approximating graphs may blow up as the approximation gets finer.
- What can we say about the approximation if we put an upper bound the first Betti number of the approximating graphs?
- Given a compact geodesic space X, we define the sequence $\left(\delta_{n}^{X}\right)_{n \geq 0}$ as follows :

$$
\delta_{n}^{X}:=\inf \left\{d_{\mathrm{GH}}(X, G): G \text { a finite metric graph, } \beta_{1}(G) \leq n\right\} .
$$

Approximation by the Reeb graph

\square Given a function $f: X \rightarrow \mathbb{R}$, the Reeb graph X_{f} is the quotient space X / \sim where $x \sim y$ if there is a continuous path between x and y on which f is constant. This is a graph under certain conditions and it can be given a length structure pulled back by f. If $f=d(p, \cdot)$ for some p in X, then we denote X_{f} by X_{p}. It is known that $\beta_{1}\left(X_{p}\right) \leq \beta_{1}(X)$.

Approximation by the Reeb graph

\square Given a function $f: X \rightarrow \mathbb{R}$, the Reeb graph X_{f} is the quotient space X / \sim where $x \sim y$ if there is a continuous path between x and y on which f is constant. This is a graph under certain conditions and it can be given a length structure pulled back by f. If $f=d(p, \cdot)$ for some p in X, then we denote X_{f} by X_{p}. It is known that $\beta_{1}\left(X_{p}\right) \leq \beta_{1}(X)$.

Approximation by the Reeb graph

\square Given a function $f: X \rightarrow \mathbb{R}$, the Reeb graph X_{f} is the quotient space X / \sim where $x \sim y$ if there is a continuous path between x and y on which f is constant. This is a graph under certain conditions and it can be given a length structure pulled back by f. If $f=d(p, \cdot)$ for some p in X, then we denote X_{f} by X_{p}. It is known that $\beta_{1}\left(X_{p}\right) \leq \beta_{1}(X)$.

Theorem

Let X be a compact geodesic space such that $\beta=\beta_{1}(X)$ is finite and p be a point in X. Then,

Approximation by the Reeb graph

\square Given a function $f: X \rightarrow \mathbb{R}$, the Reeb graph X_{f} is the quotient space X / \sim where $x \sim y$ if there is a continuous path between x and y on which f is constant. This is a graph under certain conditions and it can be given a length structure pulled back by f. If $f=d(p, \cdot)$ for some p in X, then we denote X_{f} by X_{p}. It is known that $\beta_{1}\left(X_{p}\right) \leq \beta_{1}(X)$.

Theorem

Let X be a compact geodesic space such that $\beta=\beta_{1}(X)$ is finite and p be a point in X. Then,
i) For $n \geq \beta$,

$$
\frac{d_{\mathrm{GH}}\left(X, X_{p}\right)}{16 n+13} \leq \delta_{n}^{X} \leq d_{\mathrm{GH}}\left(X, X_{p}\right) .
$$

Approximation by the Reeb graph

\square Given a function $f: X \rightarrow \mathbb{R}$, the Reeb graph X_{f} is the quotient space X / \sim where $x \sim y$ if there is a continuous path between x and y on which f is constant. This is a graph under certain conditions and it can be given a length structure pulled back by f. If $f=d(p, \cdot)$ for some p in X, then we denote X_{f} by X_{p}. It is known that $\beta_{1}\left(X_{p}\right) \leq \beta_{1}(X)$.

Theorem

Let X be a compact geodesic space such that $\beta=\beta_{1}(X)$ is finite and p be a point in X. Then,
i) For $n \geq \beta$,

$$
\frac{d_{\mathrm{GH}}\left(X, X_{p}\right)}{16 n+13} \leq \delta_{n}^{X} \leq d_{\mathrm{GH}}\left(X, X_{p}\right) .
$$

ii) Let $a_{1}^{X} \geq a_{2}^{X} \geq \ldots$ be the lengths of the intervals in the first persistent barcode of the open Vietoris-Rips filtration of X. For $n<\beta$,

$$
\frac{d_{\mathrm{GH}}\left(X, X_{p}\right)}{16 \beta+13} \leq \delta_{n}^{X} \leq d_{\mathrm{GH}}\left(X, X_{p}\right)+(6 \beta+6) a_{n+1}^{X} .
$$

[^0]: . This is a joint work with Facundo Mémoli
 . https ://arxiv.org/abs/1809.05566. This work was partially supported by grants NSF AF 1526513, NSF DMS 1723003, NSF CCF 1740761.

